Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76.811
Filtrar
1.
Nat Commun ; 15(1): 2862, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580648

RESUMO

The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.


Assuntos
Proteína BRCA1 , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína BRCA1/genética , Proteína BRCA2/genética , DNA/metabolismo , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Homóloga , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos
2.
Proc Natl Acad Sci U S A ; 121(15): e2321338121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568969

RESUMO

To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cromatina/metabolismo , Ritmo Circadiano/genética , Proteínas CLOCK/genética , DNA/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , RNA/metabolismo
3.
Cells ; 13(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607052

RESUMO

Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein-protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Microscopia de Fluorescência/métodos , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , DNA/metabolismo
4.
Biochemistry (Mosc) ; 89(Suppl 1): S224-S233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621752

RESUMO

The review discusses electrochemical methods for analysis of drug interactions with DNA. The electroanalysis method is based on the registration of interaction-induced changes in the electrochemical oxidation potential of heterocyclic nitrogenous bases in the DNA molecule and in the maximum oxidation current amplitude. The mechanisms of DNA-drug interactions can be identified based on the shift in the electrooxidation potential of heterocyclic nitrogenous bases toward more negative (cathodic) or positive (anodic) values. Drug intercalation into DNA shifts the electrochemical oxidation potential to positive values, indicating thermodynamically unfavorable process that hinders oxidation of nitrogenous bases in DNA. The potential shift toward the negative values indicates electrostatic interactions, e.g., drug binding in the DNA minor groove, since this process does not interfere with the electrochemical oxidation of bases. The concentration-dependent decrease in the intensity of electrochemical oxidation of DNA bases allows to quantify the type of interaction and calculate the binding constants.


Assuntos
DNA , Testes Farmacogenômicos , DNA/metabolismo , Interações Medicamentosas
5.
Biochemistry (Mosc) ; 89(Suppl 1): S262-S277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621755

RESUMO

Data on the structure of G-quadruplexes, noncanonical nucleic acid forms, supporting an idea of their potential participation in regulation of gene expression in response to the change in intracellular Na+i/K+i ratio are considered in the review. Structural variety of G-quadruplexes, role of monovalent cations in formation of this structure, and thermodynamic stability of G-quadruplexes are described. Data on the methods of their identification in the cells and biological functions of these structures are presented. Analysis of information about specific interactions of G-quadruplexes with some proteins was conducted, and their potential participation in the development of some pathological conditions, in particular, cancer and neurodegenerative diseases, is considered. Special attention is given to the plausible role of G-quadruplexes as sensors of intracellular Na+i/K+i ratio, because alteration of this parameter affects folding of G-quadruplexes changing their stability and, thereby, organization of the regulatory elements of nucleic acids. The data presented in the conclusion section demonstrate significant change in the expression of some early response genes under certain physiological conditions of cells and tissues depending on the intracellular Na+i/K+i ratio.


Assuntos
Quadruplex G , DNA/metabolismo , Sódio/química , Cátions Monovalentes/química , Termodinâmica
6.
Biochemistry (Mosc) ; 89(Suppl 1): S249-S261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621754

RESUMO

Nucleic acids (NAs) are important components of living organisms responsible for the storage and transmission of hereditary information. They form complex structures that can self-assemble and bind to various biological molecules. DNAzymes are NAs capable of performing simple chemical reactions, which makes them potentially useful elements for creating DNA nanomachines with required functions. This review focuses on multicomponent DNA-based nanomachines, in particular on DNAzymes as their main functional elements, as well as on the structure of DNAzyme nanomachines and their application in the diagnostics and treatment of diseases. The article also discusses the advantages and disadvantages of DNAzyme-based nanomachines and prospects for their future applications. The review provides information about new technologies and the possibilities of using NAs in medicine.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/química , DNA Catalítico/genética , DNA Catalítico/metabolismo , DNA/metabolismo
7.
ACS Infect Dis ; 10(4): 1097-1115, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38564341

RESUMO

Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.


Assuntos
DNA Topoisomerase IV , Mycobacterium tuberculosis , DNA Topoisomerase IV/genética , Fluoroquinolonas/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , DNA/metabolismo , Mycobacterium tuberculosis/genética
8.
Sci Rep ; 14(1): 7708, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565932

RESUMO

Human RECQL4, a member of the RecQ helicase family, plays a role in maintaining genomic stability, but its precise function remains unclear. The N-terminus of RECQL4 has similarity to Sld2, a protein required for the firing of DNA replication origins in budding yeast. Consistent with this sequence similarity, the Xenopus laevis homolog of RECQL4 has been implicated in initiating DNA replication in egg extracts. To determine whether human RECQL4 is required for firing of DNA replication origins, we generated cells in which both RECQL4 alleles were targeted, resulting in either lack of protein expression (knock-out; KO) or expression of a full-length, mutant protein lacking helicase activity (helicase-dead; HD). Interestingly, both the RECQL4 KO and HD cells were viable and exhibited essentially identical origin firing profiles as the parental cells. Analysis of the rate of fork progression revealed increased rates in the RECQL4 KO cells, which might be indicative of decreased origin firing efficiency. Our results are consistent with human RECQL4 having a less critical role in firing of DNA replication origins, than its budding yeast homolog Sld2.


Assuntos
RecQ Helicases , Origem de Replicação , Animais , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , Replicação do DNA , Xenopus laevis/metabolismo , DNA/metabolismo
9.
Genome Med ; 16(1): 52, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566104

RESUMO

BACKGROUND: Prostate cancer is a significant health concern, particularly among African American (AA) men who exhibit higher incidence and mortality compared to European American (EA) men. Understanding the molecular mechanisms underlying these disparities is imperative for enhancing clinical management and achieving better outcomes. METHODS: Employing a multi-omics approach, we analyzed prostate cancer in both AA and EA men. Using Illumina methylation arrays and RNA sequencing, we investigated DNA methylation and gene expression in tumor and non-tumor prostate tissues. Additionally, Boolean analysis was utilized to unravel complex networks contributing to racial disparities in prostate cancer. RESULTS: When comparing tumor and adjacent non-tumor prostate tissues, we found that DNA hypermethylated regions are enriched for PRC2/H3K27me3 pathways and EZH2/SUZ12 cofactors. Olfactory/ribosomal pathways and distinct cofactors, including CTCF and KMT2A, were enriched in DNA hypomethylated regions in prostate tumors from AA men. We identified race-specific inverse associations of DNA methylation with expression of several androgen receptor (AR) associated genes, including the GATA family of transcription factors and TRIM63. This suggests that race-specific dysregulation of the AR signaling pathway exists in prostate cancer. To investigate the effect of AR inhibition on race-specific gene expression changes, we generated in-silico patient-specific prostate cancer Boolean networks. Our simulations revealed prolonged AR inhibition causes significant dysregulation of TGF-ß, IDH1, and cell cycle pathways specifically in AA prostate cancer. We further quantified global gene expression changes, which revealed differential expression of genes related to microtubules, immune function, and TMPRSS2-fusion pathways, specifically in prostate tumors of AA men. Enrichment of these pathways significantly correlated with an altered risk of disease progression in a race-specific manner. CONCLUSIONS: Our study reveals unique signaling networks underlying prostate cancer biology in AA and EA men, offering potential insights for clinical management strategies tailored to specific racial groups. Targeting AR and associated pathways could be particularly beneficial in addressing the disparities observed in prostate cancer outcomes in the context of AA and EA men. Further investigation into these identified pathways may lead to the development of personalized therapeutic approaches to improve outcomes for prostate cancer patients across different racial backgrounds.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Metilação de DNA , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Perfilação da Expressão Gênica , DNA/metabolismo
10.
Nat Commun ; 15(1): 3111, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600075

RESUMO

DNA methyltransferases DNMT3A- and DNMT3B-mediated DNA methylation critically regulate epigenomic and transcriptomic patterning during development. The hotspot DNMT3A mutations at the site of Arg822 (R882) promote polymerization, leading to aberrant DNA methylation that may contribute to the pathogenesis of acute myeloid leukemia (AML). However, the molecular basis underlying the mutation-induced functional misregulation of DNMT3A remains unclear. Here, we report the crystal structures of the DNMT3A methyltransferase domain, revealing a molecular basis for its oligomerization behavior distinct to DNMT3B, and the enhanced intermolecular contacts caused by the R882H or R882C mutation. Our biochemical, cellular, and genomic DNA methylation analyses demonstrate that introducing the DNMT3B-converting mutations inhibits the R882H-/R882C-triggered DNMT3A polymerization and enhances substrate access, thereby eliminating the dominant-negative effect of the DNMT3A R882 mutations in cells. Together, this study provides mechanistic insights into DNMT3A R882 mutations-triggered aberrant oligomerization and DNA hypomethylation in AML, with important implications in cancer therapy.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Leucemia Mieloide Aguda , Humanos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Mutação , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Metilação de DNA/genética , DNA/metabolismo
11.
Clin Epigenetics ; 16(1): 50, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561804

RESUMO

BACKGROUND: Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS: We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS: Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Nucleossomos/genética , Neoplasias da Mama/genética , Metilação de DNA , Histonas/genética , Histonas/metabolismo , DNA/metabolismo , Ácidos Nucleicos Livres/metabolismo , Cromatina
12.
Sci Adv ; 10(15): eadk7678, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598631

RESUMO

The Rpd3S complex plays a pivotal role in facilitating local histone deacetylation in the transcribed regions to suppress intragenic transcription initiation. Here, we present the cryo-electron microscopy structures of the budding yeast Rpd3S complex in both its apo and three nucleosome-bound states at atomic resolutions, revealing the exquisite architecture of Rpd3S to well accommodate a mononucleosome without linker DNA. The Rpd3S core, containing a Sin3 Lobe and two NB modules, is a rigid complex and provides three positive-charged anchors (Sin3_HCR and two Rco1_NIDs) to connect nucleosomal DNA. In three nucleosome-bound states, the Rpd3S core exhibits three distinct orientations relative to the nucleosome, assisting the sector-shaped deacetylase Rpd3 to locate above the SHL5-6, SHL0-1, or SHL2-3, respectively. Our work provides a structural framework that reveals a dynamic working model for the Rpd3S complex to engage diverse deacetylation sites.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Histonas/metabolismo , Microscopia Crioeletrônica , Metilação , Histona Desacetilases/metabolismo , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Curr Med Sci ; 44(2): 261-272, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561595

RESUMO

DNA damage occurs across tumorigenesis and tumor development. Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment (TIME) and dominate tumor progression. Accumulating evidence documents that multiple signaling pathways, including cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein (ATM/ATR), are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines. These cytokines possess multifaced functions in the anti-tumor immune response. Thus, it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines, critical for the development of effective tumor therapies. This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines. We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.


Assuntos
Ataxia Telangiectasia , Citocinas , Humanos , Citocinas/genética , Ataxia Telangiectasia/genética , Dano ao DNA , DNA/metabolismo , Transdução de Sinais
14.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588418

RESUMO

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Ligação a Telômeros , Animais , Proteínas de Ligação a Telômeros/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Dimerização , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/química , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Ligação Proteica , Telômero/genética , Telômero/metabolismo , Complexo Shelterina , DNA/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas , Mamíferos/genética
15.
Biochem Biophys Res Commun ; 710: 149898, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38598903

RESUMO

Type II toxin-antitoxin (TA) systems are ubiquitously distributed genetic elements in prokaryotes and are crucial for cell maintenance and survival under environmental stresses. The antitoxin is a modular protein consisting of the disordered C-terminal region that physically contacts and neutralizes the cognate toxin and the well-folded N-terminal DNA binding domain responsible for autorepression of TA transcription. However, how the two functional domains communicate is largely unknown. Herein, we determined the crystal structure of the N-terminal domain of the type II antitoxin MazE-mt10 from Mycobacterium tuberculosis, revealing a homodimer of the ribbon-helix-helix (RHH) fold with distinct DNA binding specificity. NMR studies demonstrated that full-length MazE-mt10 forms the helical and coiled states in equilibrium within the C-terminal region, and that helical propensity is allosterically enhanced by the N-terminal binding to the cognate operator DNA. This coil-to-helix transition may promote toxin binding/neutralization of MazE-mt10 and further stabilize the TA-DNA transcription repressor. This is supported by many crystal structures of type II TA complexes in which antitoxins form an α-helical structure at the TA interface. The hidden helical state of free MazE-mt10 in solution, favored by DNA binding, adds a new dimension to the regulatory mechanism of type II TA systems. Furthermore, complementary approaches using X-ray crystallography and NMR allow us to study the allosteric interdomain interplay of many other full-length antitoxins of type II TA systems.


Assuntos
Antitoxinas , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Antitoxinas/química , Modelos Moleculares , Fatores de Transcrição/metabolismo , DNA/metabolismo , Proteínas de Bactérias/metabolismo
16.
Nat Commun ; 15(1): 3324, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637512

RESUMO

CRISPR-Cas are adaptive immune systems in bacteria and archaea that utilize CRISPR RNA-guided surveillance complexes to target complementary RNA or DNA for destruction1-5. Target RNA cleavage at regular intervals is characteristic of type III effector complexes6-8. Here, we determine the structures of the Synechocystis type III-Dv complex, an apparent evolutionary intermediate from multi-protein to single-protein type III effectors9,10, in pre- and post-cleavage states. The structures show how multi-subunit fusion proteins in the effector are tethered together in an unusual arrangement to assemble into an active and programmable RNA endonuclease and how the effector utilizes a distinct mechanism for target RNA seeding from other type III effectors. Using structural, biochemical, and quantum/classical molecular dynamics simulation, we study the structure and dynamics of the three catalytic sites, where a 2'-OH of the ribose on the target RNA acts as a nucleophile for in line self-cleavage of the upstream scissile phosphate. Strikingly, the arrangement at the catalytic residues of most type III complexes resembles the active site of ribozymes, including the hammerhead, pistol, and Varkud satellite ribozymes. Our work provides detailed molecular insight into the mechanisms of RNA targeting and cleavage by an important intermediate in the evolution of type III effector complexes.


Assuntos
Proteínas Associadas a CRISPR , RNA Catalítico , RNA/metabolismo , RNA Catalítico/metabolismo , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Domínio Catalítico , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Clivagem do RNA
17.
Hum Mol Genet ; 33(9): 818-834, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641551

RESUMO

Telomeres are nucleoprotein structures at the end of chromosomes that maintain their integrity. Mutations in genes coding for proteins involved in telomere protection and elongation produce diseases such as dyskeratosis congenita or idiopathic pulmonary fibrosis known as telomeropathies. These diseases are characterized by premature telomere shortening, increased DNA damage and oxidative stress. Genetic diagnosis of telomeropathy patients has identified mutations in the genes TERT and TERC coding for telomerase components but the functional consequences of many of these mutations still have to be experimentally demonstrated. The activity of twelve TERT and five TERC mutants, five of them identified in Spanish patients, has been analyzed. TERT and TERC mutants were expressed in VA-13 human cells that express low telomerase levels and the activity induced was analyzed. The production of reactive oxygen species, DNA oxidation and TRF2 association at telomeres, DNA damage response and cell apoptosis were determined. Most mutations presented decreased telomerase activity, as compared to wild-type TERT and TERC. In addition, the expression of several TERT and TERC mutants induced oxidative stress, DNA oxidation, DNA damage, decreased recruitment of the shelterin component TRF2 to telomeres and increased apoptosis. These observations might indicate that the increase in DNA damage and oxidative stress observed in cells from telomeropathy patients is dependent on their TERT or TERC mutations. Therefore, analysis of the effect of TERT and TERC mutations of unknown function on DNA damage and oxidative stress could be of great utility to determine the possible pathogenicity of these variants.


Assuntos
Disceratose Congênita , Telomerase , Humanos , Telomerase/genética , Telômero/genética , Telômero/metabolismo , RNA/genética , Mutação , Dano ao DNA/genética , Estresse Oxidativo/genética , Apoptose/genética , DNA/metabolismo
18.
Ren Fail ; 46(1): 2338931, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38622929

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Proliferation-inducing ligand (APRIL) was identified as an important cause of glycosylation deficiency of IgA1 (Gd-IgA1), which can 'trigger' IgAN. Our previous study indicated that high migration group protein B2 (HMGB2) in peripheral blood mononuclear cells from patients with IgAN was associated with disease severity, but the underlying mechanism remains unclear. MATERIALS AND METHODS: The location of HMGB2 was identified by immunofluorescence. qRT-PCR and Western blotting were used to measure HMGB2, HMGA1, and APRIL expression. Gd-IgA1 levels were detected by enzyme-linked immunosorbent assay (ELISA). In addition, we used DNA pull-down, protein profiling, and transcription factor prediction software to identify proteins bound to the promoter region of the APRIL gene. RNA interference and coimmunoprecipitation (Co-IP) were used to verify the relationships among HMGB2, high mobility group AT-hook protein 1 (HMGA1), and APRIL. RESULTS: HMGB2 expression was greater in IgAN patients than in HCs and was positively associated with APRIL expression in B cells. DNA pull-down and protein profiling revealed that HMGB2 and HMGA1 bound to the promoter region of the APRIL gene. The expression levels of HMGA1, APRIL, and Gd-IgA1 were downregulated after HMGB2 knockdown. Co-IP indicated that HMGB2 binds to HMGA1. The Gd-IgA1 concentration in the supernatant was reduced after HMGA1 knockdown. HMGA1 binding sites were predicted in the promoter region of the APRIL gene. CONCLUSION: HMGB2 expression is greater in IgAN patients than in healthy controls; it promotes APRIL expression by interacting with HMGA1, thereby inducing Gd-IgA1 overexpression and leading to IgAN.


Assuntos
Glomerulonefrite por IGA , Humanos , Proteína HMGA1a/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Glicosilação , Fatores de Transcrição/metabolismo , Leucócitos Mononucleares/metabolismo , Imunoglobulina A , DNA/metabolismo
19.
Anal Chem ; 96(14): 5625-5632, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38556980

RESUMO

The robust point-of-care platform for sensitive, multiplexed, and affordable detection of allergen-specific IgE (sIgE) is an urgent demand in component-resolved diagnostics. Here, we developed a microfluidic immunosensing platform based on a rolling circle amplification-assisted DNA dendrimer probe for sensitive detection of multiple sIgEs. The versatile multichannel microfluidic whole blood analytical device integrates cell filtration, recombinant antigen-modified magnetic enrichment, and DNA dendrimer probe-amplified signal transduction for portable on-chip analysis. Three sIgEs against common oyster allergens were simultaneously detected in blood samples by simple smartphone-based imaging without any pretreatment. The quantitative detection of multiple allergen-specific antibodies on the platform was achieved with limits of detection of less than 50 pg/mL, exhibiting superior sensitivity compared to most point-of-care testing. The detection results of 55 serum samples and 4 whole blood samples were 100% consistent with the ELISA results, confirming the accuracy and stability of our platform. Additionally, the reversible combination of hexahistidine6-tag and Ni-IMAC magbead was elegantly utilized on the immunosensing platform for desired reversibility. With the advantages of general applicability, high sensitivity, and reversibility, the DNA dendrimer-based microfluidic immunosensing platform provides great potential for the portable detection of immune proteins as a point-of-care platform in disease diagnostics and biological analysis.


Assuntos
Dendrímeros , Microfluídica , DNA/metabolismo , Sondas de DNA , Alérgenos , Imunoglobulina E
20.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567819

RESUMO

Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.


Assuntos
Complexo de Reconhecimento de Origem , Proteínas de Saccharomyces cerevisiae , Humanos , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação/genética , Sítios de Ligação , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromossomos Humanos/metabolismo , DNA/metabolismo , Proteínas de Ciclo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...